
© 1998-1999 by Stephen Rindsberg 1

Cross-Platform
Font-Encoding Problems

in
Acrobat PDF Files

And assorted other stuff

By Steve Rindsberg
with much help, many valuable suggestions and gentle but persistent prodding from

Arnis Gubins, Aandi Inston, Thomas Phinney and Kathleen Tinkel
on Compuserve’s AdobeApps and DTPForum forums. Thanks, folks.

© 1998-1999 by Stephen Rindsberg 2

Contents
Cross-Platform Font-Encoding Problems in Acrobat PDF Files ... 1

Contents ... 2

What this is all about ... 3

The problem... 4

Why does it do that? .. 5

Then came Windows. .. 6

Here’s what we end up with ... 7

Here’s why it happens .. 8

It's supposed to work but … .. 10

There you are WHERE? .. 11

OK. Now I know where I am. Where's the exit, please? ... 12

You use a PC but want to spare Mac users this abuse? ... 13

About the included files... 14

What do I do with this embarrassment of riches?.. 17

Who is this "Rindsberg"?... 18

© 1998-1999 by Stephen Rindsberg 3

What this is all about

This all got started when I was researching an article about moving files from PC to Mac.

Part of the article describes what happens to the "high-ascii" characters (all the oddball/symbol/foreign
characters you don’t find on your everyday keyboard) as they move from one platform to the other.
The article series appeared in The Corel Draw Journal, published by The Cobb Group, now part of
Ziff Davis. Back issues may be available, in case you’re interested.

Later, the subject of cross-platform font encoding arose in the Acrobat section of the AdobeApps
forum on Compuserve. It seemed like a natural extension of the work I’d already done so I looked into
it a bit further. Most of what follows is a result of that and discussions with the Acrobat forum
regulars, particularly Arnis Gubins, Thomas Phinney and Aandi Inston. Without their help and
suggestions, none of what follows would ever have gotten sorted out (to the extent that it has).

I don’t claim to be an expert at any of this; I’m just passing along the results of the homework I’ve
done. If you find errors or omissions, I’ll gladly take the blame for them, so long as you’ll take the time
to point them out to me. Fair enough?

Mac users will note that this has a markedly "create it on the PC and move it to the Mac" flavor.
Guilty as charged. That’s what I mostly do, so that’s what most interested me. The logic, if not all the
specifics, works similarly in the other direction as well, though.

© 1998-1999 by Stephen Rindsberg 4

The problem

PDF users find that some characters get changed when you open PC-created PDFs on the Mac, even
though this isn’t supposed to happen, according to Adobe. In fact, if all goes according to plan, it
doesn’t happen; PDF does an extraordinary job of preserving PC encoding on the Mac.

But as with so many other well-laid plans, things that go bump in the night can derail the train, to
mixmaster a metaphor or three.

Suppose you have a PC document that contains high-ascii characters, French language text with
accents, for example. The accented characters will often get converted to something else when you
open the same document on a Mac. The same is true going from Mac to PC.

The better cross-platform apps do what they can to correct these mismatches, and generally they do a
good job, but some characters may still go astray or disappear altogether.

© 1998-1999 by Stephen Rindsberg 5

Why does it do that?

Computers don’t actually deal with characters. They work strictly with numbers.

To display text, computers use one of several conventions that assigns (or "maps") numbers to specific
characters. This mapping is called "character encoding" and enables the computer to display an "A"
when presented with a text string containing the number 65 and so on.

While we refer to these numbers in decimal or hexadecimal notation for human-readable convenience,
the computer actually works with binary numbers, collections of on/off bits. Historically, many
computer systems used 7-bit character sets. Since the highest number that can be expressed in seven
binary bits is 128, these systems could only deal with 128 characters. One method of mapping these
128 possible numbers to characters came into common use early in compu-history and has become
standardized as the ASCII character set. (ASCII = American Standard Code for Information
Interchange.)

DOS-based PCs used 8-bit numbers to represent characters, allowing for 256 different characters .
Since early PCs had no graphics capabilities, the PC’s designers used the newly added character
positions for graphics and line-drawing characters.

The Mac came along a few years later. It also used an 8-bit character set, but since it was more than
adequately supplied with graphics capabilities, there was no need to waste limited character slots on
graphics-drawing characters. Its designers were free to stock the upper 128 (high-ascii) characters
with extra punctuation marks and nearly any accented/special characters needed for roman alphabet
based languages.

© 1998-1999 by Stephen Rindsberg 6

Then came Windows.

I’ll leave it to Mr. Gates to explain why he decided to toss out a perfectly workable Mac character-
encoding wheel and invent a new (incompatible) one. Windows uses a character set similar to the
Mac’s but encodes it almost entirely differently once we leave the familiar ASCII characters.

Both systems use accented vowels, for instance, but they’re represented by different numbers. In fact,
only five high-ascii characters share the same encoding between platforms.

The diagram on the next page shows one example of the chaos that can result. I used Corel Draw to
create a drawing that includes all the high-ascii characters in Windows encoding, saved it as an
Illustrator file, then opened it in Illustrator on the Mac.

The results aren’t the fault of bad programming on anybody’s part. Draw (correctly) asks for character
number 0174, and expects that the system it’s running on will supply a registered trademark symbol.
Illustrator on the Mac hands the same 0174 character to the Mac system and gets back the character
you start that famous Fable guy’s name with.

The fault, dear Brutus, is in the system. Or the difference between the two systems.

© 1998-1999 by Stephen Rindsberg 7

Here’s what we end up with

Œ
–

ª
´
¾
È
Ò
Ü
æ
ð

—
¡
«
µ
¿
É
Ó
Ý
ç
ñ

˜
¢
¬
¶
À
Ê
Ô
Þ
è
ò

™
£
−
·
Á
Ë
Õ
ß
é
ó

š
¤
®
¸
Â
Ì
Ö
à
ê
ô

‘
›
¥
¯
¹
Ã
Í
×
á
ë
õ

’
œ
¦
°
º
Ä
Î
Ø
â
ì
ö

012

0

‚013

014

015

016

017

018

019

020

021

022

023

ú
024

025

1

ƒ

û

2

„

ü

3

…

ý

4

†

þ

5

‡

ÿ

6

ˆ

7

‰
“

§
±
»
Å
Ï
Ù
ã
í
÷

8

Š
”

¨
²
¼
Æ
Ð
Ú
ä
î
ø

9

‹
•
Ÿ
©
³
½
Ç
Ñ
Û
å
ï
ù

Different, Mac vs. PC Not used on Mac Not used in Windows Same on Mac and PC

As created in Draw As imported by Mac Illustrator

© 1998-1999 by Stephen Rindsberg 8

Here’s why it happens

The illustration gives you some idea what can happen to high-ascii characters when you move them
from PC to Mac. As you can see, the only characters that don’t get dinged are the five that share the
same encoding (that is, are represented by the same number) on both platforms (cent, pound,
copyright, plus/minus and micron, by name)

To summarize what we’ve seen so far:

q The basic alphabetic, numerical and punctuation characters are encoded identically on both
platforms, so no cross-platform translation is needed, no cross-platform errors will occur.

q Some characters are used on both platforms but encoded differently. A decimal 0201 on the PC is
E-with-acute-accent, but becomes an ellipsis on the Mac. Most modern cross-platform programs
try to translate the one character encoding set into the other, but there’s a limit to how completely
they can do this because …

q Some characters are part of the Windows character set but are not encoded at all … that is, they're
simply not available … on the Mac. The broken bar (aka vertical bar or pipe) symbol, some of the
fraction characters and a few others, for example.

q Likewise, some Mac characters aren't part of the Windows character set.

q There are also characters on the Mac that, under certain circumstances, get pulled from a
completely different font (some of the mathematical symbols). This makes my head hurt, so I'll
ignore it from now on.

It's the characters that are available on one platform and not on another that cause most of the ruckus.
How are you supposed to translate the broken bar symbol from a Windows document and display it on
a Mac when that character doesn't exist on the Mac?

© 1998-1999 by Stephen Rindsberg 9

Beats me, but those clever folks at Adobe have it sorted out and working very nicely in the PDF
format and the companion Reader software for both PC and Mac. Left to its own devices, Adobe
makes it work.

And it’s at this point that I first thank you for your patience in bearing with me so far and turn
(finally!) to the meat of the matter: Why doesn’t it always work?

© 1998-1999 by Stephen Rindsberg 10

It's supposed to work but …

Sometimes when you open a PDF file on the Mac you’ll see a message to the effect that the font could
not be re-encoded and that some characters could not be displayed. And in fact, some characters don’t
appear correctly on screen in Reader or Exchange.

Choose Document Info, Fonts from the File menu and you’ll see that the original file calls for e.g.
Times-Roman Type 1 but Reader is using Times-Roman TrueType. This can happen even when
you’ve specified that all fonts be embedded when you created the PDF.

Remember I qualified Adobe’s perfection with "left to its own devices" a few sentences back?
Sometimes a series of little glitches tosses sand in the Acrobat watchworks. For starters, the following
fonts are never embedded, no matter what options you choose in PDFWriter/Distiller:

q Courier (regular, bold, italic and bold-italic)

q Helvetica (regular, bold, italic and bold-italic)

q Times-Roman (regular, bold, italic and bold-italic)

q Symbol

q ZapfDingbats.

This is by design. If these fonts aren’t already on your system, the Reader or Exchange installer
installs them. Since this base set of fonts will (in theory) always be present, there’s no need to embed
them in PDFs, and leaving them out makes the PDF files smaller.

However, the Acrobat installer evidently doesn’t distinguish between Type 1 and TrueType versions
of fonts. If the Helvetica on the Mac happens to be TrueType, the installer doesn’t install the Type 1
version and there you are.

Steve
Note: This information was valid when written in 1999 or so. But in computer time, that's several ice ages ago. Things are different now. Acrobat includes a slightly different set of fonts, Unicode support has become widespread, freeing us from the limits (and incompatibilites) imposed by 7- and 8-bit character encoding schemes.In short, take this with a grain of salt.

© 1998-1999 by Stephen Rindsberg 11

There you are WHERE?

In Funny Character City is where.

The Type 1 versions of the fonts contain all the characters needed to display anything you can enter on
a PC or a Mac. Though the computer can only cope with 255 of them at a time, the font itself can
contain many more glyphs (character descriptions).

Acrobat’s clever enough to re-encode and display the extra glyphs in Type 1 fonts when a PDF needs
them, so that even though there’s no broken bar or S-with-caron on the Mac, Acrobat can display them
if the PDF requires it.

Neat trick. But to pull it off, Acrobat has to have access to a Type 1 version of the font.

Perhaps the TrueType versions of the base fonts lack these extra glyphs or perhaps TrueType fonts
can’t be re-encoded/remapped at will by Acrobat, but in any case, if the PDF needs one of these
special characters and Acrobat finds itself having to use TrueType rather than the Type 1 font it
expects, you’ll see the "can’t re-encode" message and there will be character substitutions.

© 1998-1999 by Stephen Rindsberg 12

OK. Now I know where I am. Where’s the exit, please?

To cure the problem on the Mac, check your Fonts folder. Double click each of the Courier, Helvetica,
Times-Roman, Symbol and ZapfDingbats suitcases to see if there’s a TrueType font lurking within.
I’m told by my betters that these fonts are included with the OS installation on newer Macs. Here’s
how you can tell:

q Bitmap (and for our purposes, innocuous) screen fonts in the suitcase have numbers next to their
names indicating point size. TrueType fonts don’t.

q The usual bitmap screen fonts are around 7k or so in size. TrueType fonts are in the 60k size range.

q The icons for bitmap screen fonts are a single "A". TrueType icons are a "zoomed" series of three
"A"s.

Remove the TrueType versions of these fonts. You probably know a lot more about your Mac than I
know about mine, so handle this however you think best. Just be sure to lose the TrueType versions
of the base Acrobat fonts listed earlier. Personally, I’d lose the TrueType versions of all the base
PostScript fonts and any other Type 1 font I plan to use, but that’s your call. In any case, it’s always
Bad Medicine to have both TrueType and Type 1 versions of the same font installed.

Then reinstall Reader to the same folder it already lives in. No need to uninstall it first. Since the
TrueType fonts are gone, it’ll install Type 1 fonts if necessary.

Now look at this PDF again. It uses Helvetica and Times-Roman both, is that Rindsberg a sneaky
devil or what? If you get a "can’t re-encode" message, something’s not right. If File, Document Info,
Fonts shows that Reader is using a TrueType font or AdobeSanMM/AdobeSerifMM, ditto.

© 1998-1999 by Stephen Rindsberg 13

You use a PC but want to spare Mac users this abuse?

Good on you! May you be amply rewarded in the next life or sooner for your consideration and
sterling moral qualities. Here’s how to make life easier for Mac users who read your PDFs:

The coward’s way out: Don’t use any funny characters or at least stick to the ones that are used on
both PC and Mac. Yeah. I know. "Not practical, Steve."

A little trickier, but very effective: If you can live with slightly larger PDFs and aren’t constrained by
design guidelines, use a font that isn’t part of the standard 35 base fonts and embed the font in the
PDF. Acrobat will use the embedded font on the Mac and there should be no problems. Embedding
the font shouldn’t add more than the size of the font itself to the resulting PDF, and will probably add
quite a bit less, especially if you use subsetting.

If you insist on making life difficult for yourself (by using TrueType fonts): You’ll have to do some
experimenting. I did my tests with Corel Draw, which allows me optionally to convert TrueType fonts
to Type 1 at print time. Which is exactly what I did when testing with TrueType fonts. These opened
in Reader on the Mac without incident, and a peek at the Document Fonts info confirmed that Reader
was using the embedded subset of the font from the PDF in Type 1 format. Because the font is
subsetted, I probably wouldn’t be able to do any text editing in Exchange on the Mac (or on another
PC). That suits my immediate needs, so I didn’t pursue it further. You may want to achieve different
results with different originating applications. If so, a little testing is called for. You didn’t have
anything better to do this weekend anyhow, did you?

© 1998-1999 by Stephen Rindsberg 14

About the included files

The original for all this started in CorelDraw8. The drawing contains all the high-ascii (> 127 decimal)
characters in Helvetica. All the characters have been duplicated, converted to curves, given a red fill
and sent to the back of the drawing. In other words, each character in fonted text sits atop a graphics-
only version of the same character. You can easily see which characters have been remapped or
changed when the file is imported into a different app, since the red/graphic-only "character" never
changes, even though the fonted text may.

The truly eagle-eyed among you will note that I’ve goofed in at least one place: the OE character in
caps appears twice. As noted on the drawing, some apps "helpfully" capitalize letters at the beginning
of sentences for you. I thought I’d thrashed this foolishness out of Draw and corrected the resulting
screwups, but I missed this one. You’ll have to cope as best you can. Corrected in the other PDFs.

For those of you who worry about these things: I did the original drawing and the exports under
NT4/SP3 and used the MS version of the PostScript driver and the Distiller Assistant PPD to make all
of these PDFs.

I’ve exported it in several formats, using the options shown in the table on the following page:

Steve
The included files are out of date and of little value today. And for that reason they're not included.

© 1998-1999 by Stephen Rindsberg 15

File Created by

Charmap.EPS Exported as EPS, text as text (i.e.
NOT converted to curves), fonts not
included, 72dpi 1-bit TIFF preview

CharmapP.AI Exported as Adobe Illustrator/AI 3.x
format, text as text, For PC

CharmapM.AI Exported as Adobe Illustrator/AI 3.x
format, text as text, For Mac

1.PDF - 8.PDF Later in this document there’s a
spreadsheet that summarizes what
these are about, the options I chose
at each step in producing them, and
the results when viewed on PC and
Mac.

In all cases, I printed to the Adobe
Distiller Assistant driver then distilled
to PDF in Distiller v 3.02, running
NT4/SP3 and using the Microsoft-
supplied PostScript printer driver.

© 1998-1999 by Stephen Rindsberg 16

The For PC or For Mac option in Draw8 affects character mapping, so the two AI files are likely to
produce different results, depending on the app and platform you import them into. As nearly as I can
determine, the For Mac option maps the PC encodings for characters to their Mac equivalents if an
equivalent exists on the Mac. Otherwise it substitutes nulls or leaves out the character.

Other AI-producing apps don’t offer this PC vs Mac encoding option. Most likely they’ll map
characters as appropriate to the platform they’re running on. Another exercise for the reader. You
weren’t busy next weekend either, were you?

Since I told Draw NOT to download fonts when creating 1.PDF, the file ends up being rather large,
since all fonted text is converted to graphics. I didn’t include it for that reason, and because with no
fonts in it, it isn’t particularly relevant in any case. (Translation: I was too lazy to rename all the files
and re-write all the documentation)

For PDFs 2-8, I created PDFs from the same high-ascii character set. I used a variety of fonts,
including Helvetica and Times-Roman (both Type 1 and printer resident as well as being treated
specially by Distiller), Barmeno-Regular (Type 1, non-printer resident), ErasMediumITC (TrueType),
Veljovik (Type 1, non-printer-resident) and Palatino (Type 1, resident on all but very old PS printers).

An interesting note: later testing suggests that you can get very good cross-platform file exchanges by
creating PDF on the originating side, taking the PDF to the opposite side of the Great Platform Gulch,
opening it in Exchange and exporting to EPS with fonts included.

© 1998-1999 by Stephen Rindsberg 17

What do I do with this embarrassment of riches?

Try opening the various PDF files on your own computer to see whether there are any error messages
and to verify (via Files, Document Info, Fonts) what fonts are actually used on your system. Here, so
long as the caveats above are observed, they all open correctly on my Mac.

As to the EPS/AI versions of CharMAP, it’s instructive if sometimes dismaying to open, import, or
view these in different apps on different platforms. If nothing else, it proves that cross-platform
compatibility is still a dream yet to be realized, but the PDFs show that it’s getting close. Very close.

It can also show that even if a particular app happens to be running under Windows, it may still reveal
its MacHeritage. The Windows version of Photoshop 4, for example, doesn’t know what to do with
characters that don’t have a Mac equivalent. It rasterizes them incorrectly. The rasterizer that generates
previews from EPS and AI images in Windows PageMaker has similar difficulties. Neither handles
high-ascii characters correctly in all cases, as compared to a printout of the same file on a true Adobe
PS printer or a very good clone PS interpreter.

You can use these files to help you get a sense of what happens when files move from app to app, or
PC to Mac. You can learn from them which characters will get munged along the way.

If you have questions or comments about any of this, please step forward and speak up. You can
usually locate me on Compuserve’s DTPFORUM or ADOBEAPPS forums. I check the comp.text.pdf
newsgroup fairly frequently as well.

Do me, yourself and everybody else a favor, though. Please don’t email me privately with requests for
technical support. We all benefit from sharing our knowledge and experiences on a public forum, but
we make me cranky by trying to do it privately. We may not get a response if we try. ;-)

Enjoy!

© 1998-1999 by Stephen Rindsberg 18

Who is this "Rindsberg"?

Steve Rindsberg is President of RDP.
Also CEO, CFO, COO, LOAIS, SPQR, LSMFT
and any other titles that passing gusts of whimsy

leave wrapped around his ankles

http://www.rdpslides.com

http://www.rdpslides.com/

	Contents
	What this is all about
	The problem
	Why does it do that?
	Then came Windows.
	Here's what we end up with
	Here's why it happens
	It's supposed to work but –
	There you are WHERE?
	OK. Now I know where I am. Where's the exit, please?
	You use a PC but want to spare Mac users this abuse?
	About the included files
	What do I do with this embarrassment of riches?
	Who is this "Rindsberg"?

